Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Prenat Diagn ; 44(3): 369-372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163266

RESUMO

Raine syndrome (MIM 259775) is a rare autosomal recessive disorder, first described by Raine et al. in 1989, with an estimated prevalence of <1/1,000,000. This is due to pathogenic variants in FAM20C characterized by osteosclerosis, typical craniofacial features, and brain calcifications. Here, we report a novel variant in FAM20C, describe a uniquely severe craniofacial and CNS phenotype of Raine syndrome, and correlate it with prenatal findings. Fetal phenotyping was based on ultrasound and MRI. Solo exome sequencing was performed from DNA extracted from postmortem skin biopsy. Targeted parental variant testing was subsequently performed. A homozygous missense variant NM_020223.4 (c.1445 G > A (p.Gly482Glu)) was identified in FAM20C associated with Raine syndrome. The infant had the characteristic dysmorphic features seen in Raine syndrome. He had particularly significant CNS manifestations consisting of multisuture craniosynostosis with protrusion of the brain parenchyma through fontanelles and cranial lacunae. Histological sections of the brain showed marked periventricular gliosis with regions of infarction, hemorrhage, and cavitation with global periventricular leukomalacia. Numerous dystrophic calcifications were diffusely present. Here, we demonstrate the identification of a novel variant in FAM20C in an infant with the characteristic features seen in Raine syndrome. The patient expands the characteristic phenotype of Raine syndrome to include a uniquely severe CNS phenotype, first identified on prenatal imaging.


Assuntos
Anormalidades Múltiplas , Encefalopatias , Fissura Palatina , Anormalidades Craniofaciais , Exoftalmia , Microcefalia , Osteosclerose , Sinostose , Masculino , Lactente , Humanos , Gravidez , Feminino , Proteínas da Matriz Extracelular/genética , Caseína Quinase I/genética , Osteosclerose/diagnóstico por imagem , Osteosclerose/genética , Encéfalo/diagnóstico por imagem , Fenótipo , Sinostose/complicações , Crânio
2.
Prenat Diagn ; 44(2): 237-246, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37632214

RESUMO

OBJECTIVE: Recurrent deletions involving 17q12 are associated with a variety of clinical phenotypes, including congenital abnormalities of the kidney and urinary tract (CAKUT), maturity onset diabetes of the young, type 5, and neurodevelopmental disorders. Structural and/or functional renal disease is the most common phenotypic feature, although the prenatal renal phenotypes and the postnatal correlates have not been well characterized. METHOD: We reviewed pre- and postnatal medical records of 26 cases with prenatally or postnatally identified 17q12/HNF1B microdeletions (by chromosomal microarray or targeted gene sequencing), obtained through a multicenter collaboration. We specifically evaluated 17 of these cases (65%) with reported prenatal renal ultrasound findings. RESULTS: Heterogeneous prenatal renal phenotypes were noted, most commonly renal cysts (41%, n = 7/17) and echogenic kidneys (41%), although nonspecific dysplasia, enlarged kidneys, hydronephrosis, pelvic kidney with hydroureter, and lower urinary tract obstruction were also reported. Postnatally, most individuals developed renal cysts (73%, 11/15 live births), and there were no cases of end-stage renal disease during childhood or the follow-up period. CONCLUSION: Our findings demonstrate that copy number variant analysis to assess for 17q12 microdeletion should be considered for a variety of prenatally detected renal anomalies. It is important to distinguish 17q12 microdeletion from other etiologies of CAKUT as the prognosis for renal function and presence of associated findings are distinct and may influence pregnancy and postnatal management.


Assuntos
Doenças Renais Císticas , Nefropatias , Anormalidades Urogenitais , Refluxo Vesicoureteral , Gravidez , Feminino , Humanos , Deleção Cromossômica , Rim/diagnóstico por imagem , Rim/anormalidades , Nefropatias/congênito , Fenótipo , Doenças Renais Císticas/diagnóstico por imagem , Doenças Renais Císticas/genética , Fator 1-beta Nuclear de Hepatócito/genética , Estudos Multicêntricos como Assunto
4.
J Investig Med High Impact Case Rep ; 11: 23247096231154438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752093

RESUMO

Cerebral creatine deficiency syndromes (CCDS) are a rare group of inherited metabolic disorders (IMDs) that often present with nonspecific findings including global developmental delay (GDD), intellectual disability (ID), seizures, hypotonia, and behavioral differences. Creatine transporter (CRTR) deficiency is the most common CCDS, exhibiting X-linked inheritance and an estimated prevalence as high as 2.6% in individuals with neurodevelopmental disorders. Here, we present a 20-month-old boy with worsening failure to thrive (FTT) and GDD admitted for evaluation. He was found to have persistently low serum creatinine levels and a family history notable for a mother with learning disabilities and a maternal male cousin with GDD. Urine analyses revealed a marked elevation of creatine and elevated creatine:creatinine ratio suggestive of CRTR deficiency. Molecular genetic testing of SLC6A8 identified a maternally inherited hemizygous variant and brain magnetic resonance spectroscopy (MRS) showed diffusely diminished creatine peaks, further supporting the diagnosis of CRTR deficiency. The proband was started on creatine, arginine, and glycine supplementation and has demonstrated improved development. This case highlights that CRTR deficiency should be considered in all patients presenting with FTT and abnormal neurodevelopmental features, particularly if creatinine levels are low on serum chemistry studies. The nonspecific presentation of this condition in males and females likely has resulted in CRTR deficiency being underdiagnosed. There are existing therapies for individuals affected with CRTR deficiency and other CCDS, highlighting the importance of early diagnosis and intervention for affected individuals.


Assuntos
Encefalopatias Metabólicas Congênitas , Deficiência Intelectual , Humanos , Lactente , Masculino , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Creatina/genética , Creatina/metabolismo , Creatinina , Insuficiência de Crescimento , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores
5.
Am J Med Genet A ; 191(4): 977-982, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610046

RESUMO

Fibular aplasia, tibial campomelia, and oligosyndactyly (FATCO) syndrome (MIM 246570) is a rare disorder characterized by specific skeletal findings (fibular aplasia, shortened or bowed tibia, and oligosyndactyly of the foot and/or hand). Typically, no other anomalies, craniofacial dysmorphism, or developmental delays are associated. Here we report three unrelated individuals with limb anomalies consistent with FATCO syndrome who have been followed clinically for 5 years. Genetic testing of previously reported individuals with FATCO syndrome has not revealed a genetic diagnosis. However, no broader sequencing approaches have been reported. We describe the results of the three individuals with FATCO syndrome from exome and genome sequencing, all of which was nondiagnostic. Our study suggests that FATCO syndrome is not the result of a simple monogenic etiology.


Assuntos
Deformidades Congênitas do Pé , Sindactilia , Humanos , Tíbia/anormalidades , Sindactilia/genética , Deformidades Congênitas do Pé/diagnóstico , Síndrome , Genômica
6.
Genet Med ; 25(1): 63-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399132

RESUMO

PURPOSE: Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency. METHODS: We studied the phenotypic characteristics and the genome-wide DNA methylation in the peripheral blood samples of 20 individuals with heterozygous alterations in SIN3A. A total of 14 samples were used for the identification of the episignature and building of a predictive diagnostic biomarker, whereas the diagnostic model was used to investigate the methylation pattern of the remaining 6 samples. RESULTS: A predominantly hypomethylated DNA methylation profile specific to WITKOS was identified, and the classifier model was able to diagnose a previously unresolved test case. The episignature was sensitive enough to detect individuals with varying degrees of phenotypic severity carrying SIN3A haploinsufficient variants. CONCLUSION: We identified a novel, robust episignature in WITKOS due to SIN3A haploinsufficiency. This episignature has the potential to aid identification and diagnosis of individuals with WITKOS.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Genoma
7.
J Investig Med High Impact Case Rep ; 10: 23247096221101844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35638718

RESUMO

Pathogenic variants in RPS6KA3 are associated with Coffin-Lowry syndrome (CLS), an X-linked semidominant disorder characterized by intellectual disability, stimulus-induced drop attacks, distinctive facial features, progressive kyphoscoliosis, and digit anomalies in hemizygous males. Heterozygous females may also have features of CLS; however, there can be considerable phenotypic variation, often attributed to ratios of X-inactivation in various tissue types. Although skeletal anomalies and short stature are hallmarks of CLS, hypercalcemia has not been reported. Here we describe a 30-month-old girl with gross motor delays, short stature, dysmorphic features, bilateral duplicated renal collecting systems, and no family history of hypercalcemia who required multiple admissions for idiopathic hypercalcemia necessitating bisphosphonate infusions at 12.5 and 15 months of age. A maternally inherited likely-pathogenic variant in RPS6KA3 was identified by trio exome sequencing, consistent with the diagnosis of CLS in the proband and her mother. Maternal history was notable only for decreased height compared to first-degree relatives, bilateral genu valgum, and a bicornuate uterus; she was later found to also have a partially duplicated left renal collecting system. Subsequent X-inactivation studies in blood aligned with the phenotypic variation between mother and daughter. Although hypercalcemia is not a reported feature in CLS, there is evidence of interrupted osteoblast differentiation, providing a potential mechanism for hypercalcemia in this genetic condition. The hypercalcemia in this case may represent a severe presentation of an unrecognized clinical feature in CLS that resolves with age. This case further highlights the intrafamilial phenotypic variation of CLS among females, suggesting X-inactivation as the underlying mechanism, and demonstrates the value of exome sequencing in patients for whom a genetic disorder is highly suspected but not identified despite thorough evaluation.


Assuntos
Síndrome de Coffin-Lowry , Nanismo , Hipercalcemia , Deficiência Intelectual , Pré-Escolar , Síndrome de Coffin-Lowry/genética , Feminino , Humanos , Hipercalcemia/etiologia , Hipercalcemia/genética , Masculino , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
8.
J Pediatr Hematol Oncol ; 44(5): e914-e917, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398865

RESUMO

Heterozygous loss-of-function variants in the suppressor of fused protein gene (SUFU) can result in Gorlin syndrome, which is characterized by an increased frequency of basal cell carcinoma, medulloblastoma, odontogenic keratocysts, as well as other tumors. We describe a case of a 5-month-old female who presented with multiple intra-abdominal leiomyomata and was found to have a likely pathogenic splice site variant in the SUFU gene. This is the first reported case of leiomyomatosis secondary to a pathogenic SUFU variant in an infant and may represent an early, atypical presentation of Gorlin syndrome.


Assuntos
Síndrome do Nevo Basocelular , Neoplasias Cerebelares , Leiomiomatose , Meduloblastoma , Neoplasias Cerebelares/patologia , Feminino , Humanos , Lactente , Leiomiomatose/complicações , Leiomiomatose/genética , Meduloblastoma/patologia , Proteínas Repressoras/genética
10.
Am J Med Genet A ; 188(5): 1396-1406, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35018708

RESUMO

WAC-related intellectual disability (ID) is a rare genetic condition characterized by a spectrum of neurodevelopmental disorders of varying severity, including global developmental delay (GDD), ID, and autism spectrum disorder. Here, we describe five affected individuals, age range 9-20 years, and provide proof of pathogenicity of a novel splicing variant. All individuals presented with GDD, some degree of ID, and variable dysmorphism. Except for feeding difficulties, all patients were healthy without major congenital malformations or medical comorbidities. All individuals were heterozygous for de novo, previously unreported, loss of function variants in WAC. Three unrelated patients from different ethnic backgrounds shared the intronic variant c.381+4_381+7delAGTA, which was predicted to alter splicing and was initially classified as a variant of uncertain significance. Reverse transcription-polymerase chain reaction analysis from one patient's cells confirmed aberrant splicing of the WAC transcript resulting in premature termination and a truncated protein p.(Gly92Alafs*2). These functional studies and the identification of several nonrelated individuals provide sufficient evidence to classify this variant as pathogenic. The clinical description of these five individuals and the three novel variants expand the genotypic and phenotypic spectrum of this ultrarare disease.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Criança , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Adulto Jovem
11.
Mol Genet Metab ; 133(4): 378-385, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34154922

RESUMO

Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient ß-glucuronidase activity, leading to accumulation of incompletely degraded heparan, dermatan and chondroitin sulfate glycosaminoglycans. Patients with MPS VII exhibit progressive spinal deformity, which decreases quality of life. Previously, we demonstrated that MPS VII dogs exhibit impaired initiation of secondary ossification in the vertebrae and long bones. The objective of this study was to build on these findings and comprehensively characterize how vertebral bone disease manifests progressively in MPS VII dogs throughout postnatal growth. Vertebrae were collected postmortem from MPS VII and healthy control dogs at seven ages ranging from 9 to 365 days. Microcomputed tomography and histology were used to characterize bone properties in primary and secondary ossification centers. Serum was analyzed for bone turnover biomarkers. Results demonstrated that not only was secondary ossification delayed in MPS VII vertebrae, but that it progressed aberrantly and was markedly diminished even at 365 days-of-age. Within primary ossification centers, bone volume fraction and bone mineral density were significantly lower in MPS VII at 180 and 365 days-of-age. MPS VII growth plates exhibited significantly lower proliferative and hypertrophic zone cellularity at 90 days-of-age, while serum bone-specific alkaline phosphatase (BAP) was significantly lower in MPS VII dogs at 180 days-of-age. Overall, these findings establish that vertebral bone formation is significantly diminished in MPS VII dogs in both primary and secondary ossification centers during postnatal growth.


Assuntos
Doenças Ósseas/fisiopatologia , Progressão da Doença , Mucopolissacaridose VII/complicações , Coluna Vertebral/patologia , Animais , Animais Recém-Nascidos , Doenças Ósseas/genética , Osso e Ossos/patologia , Cães , Feminino , Crescimento e Desenvolvimento , Masculino , Mucopolissacaridose VII/genética , Osteogênese
12.
Am J Med Genet A ; 185(5): 1486-1493, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33683002

RESUMO

The RASopathies are a group of similar genetic syndromes with cardiovascular abnormalities, characteristic facial features, short stature, abnormalities of the skin and musculoskeletal system, and variable neurodevelopmental challenges. The most common cardiovascular abnormalities include pulmonary valvular stenosis and hypertrophic cardiomyopathy. Congenital polyvalvular disease (CPVD) refers to congenital dysplasia of two or more cardiac valves. We diagnosed a RASopathy in two individuals with CPVD and noted that CPVD in RASopathies has rarely been reported in the literature. Thus, we performed a retrospective chart review and literature review to investigate the association and characterize the phenotype of CPVD in the RASopathies. CPVD was present in 2.5% (n = 6/243) of individuals in our RASopathy cohort. Involvement of two cardiac valves, commonly the aortic and pulmonic valves, was seen in the majority of individuals (6/8; 75%) in our cohort, but only 27% (3/11) of reported CPVD and RASopathy cases in the literature. CPVD should be considered an associated cardiovascular phenotype of the RASopathies, which has implications for diagnosis and management.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas B-raf/genética , Estenose da Valva Pulmonar/genética , Adolescente , Valva Aórtica/patologia , Cardiomiopatia Hipertrófica/epidemiologia , Cardiomiopatia Hipertrófica/patologia , Anormalidades Cardiovasculares/epidemiologia , Anormalidades Cardiovasculares/genética , Anormalidades Cardiovasculares/patologia , Criança , Pré-Escolar , Nanismo/genética , Nanismo/patologia , Facies , Feminino , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Anormalidades Musculoesqueléticas/epidemiologia , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/patologia , Síndrome de Noonan , Fenótipo , Estenose da Valva Pulmonar/epidemiologia , Estenose da Valva Pulmonar/patologia , Anormalidades da Pele/genética , Anormalidades da Pele/patologia , Proteínas ras/genética
13.
Orphanet J Rare Dis ; 15(1): 336, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256811

RESUMO

BACKGROUND: Mucopolysaccharidosis (MPS) IVA, also known as Morquio A syndrome, is a rare autosomal recessive lysosomal storage disorder caused by a deficiency in the enzyme N-acetylgalactosamine-6-sulfatase. Early recognition, diagnosis, and treatment of this progressive, multisystem disease by enzyme replacement therapy (ERT) can lead to improved outcomes and reduced mortality. METHODS: This report documents the diagnostic journey and treatment with ERT of three siblings with MPS IVA. Clinical outcome measures included growth, endurance, imaging, cardiac, respiratory, ophthalmology, and laboratory evaluations. RESULTS: Three siblings, diagnosed at 14.7, 10.1, and 3.2 years of age, demonstrated clinical improvement with weekly infusions of 2.0 mg/kg elosulfase alfa (Vimizim®, BioMarin Pharmaceutical, Novato, CA, USA). Patient 1 (oldest sibling) and Patient 2 (middle sibling) experienced a diagnostic delay of 8 years 7 months and 4 years after symptom onset, respectively. All three patients demonstrated improvements in growth, 6-min walk distance, joint range of motion, and respiratory function after 30 months of ERT. The treatment was well tolerated without any adverse events. CONCLUSIONS: This case series highlights the importance of early recognition of the clinical and imaging findings that are initially subtle in MPS IVA. Early treatment with ERT is necessary to slow irreversible disease progression and improve patient outcomes. The oldest sibling experienced improvements in mobility despite severe symptoms resulting from a late diagnosis. When evaluating patients with skeletal anomalies, imaging multiple body regions is recommended. When findings such as anterior beaking of vertebrae or bilateral femoral head dysplasia are present, MPS IVA should be included in the differential diagnosis. Newborn screening must be considered for early detection, accurate diagnosis, and initiation of treatment to reduce morbidity.


Assuntos
Mucopolissacaridose IV , Irmãos , Diagnóstico Tardio , Terapia de Reposição de Enzimas , Humanos , Recém-Nascido , Mucopolissacaridose IV/diagnóstico , Mucopolissacaridose IV/tratamento farmacológico , Coluna Vertebral
14.
Genet Med ; 21(7): 1585-1593, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30514889

RESUMO

PURPOSE: Diagnosing monogenic diseases facilitates optimal care, but can involve the manual evaluation of hundreds of genetic variants per case. Computational tools like Phrank expedite this process by ranking all candidate genes by their ability to explain the patient's phenotypes. To use these tools, busy clinicians must manually encode patient phenotypes from lengthy clinical notes. With 100 million human genomes estimated to be sequenced by 2025, a fast alternative to manual phenotype extraction from clinical notes will become necessary. METHODS: We introduce ClinPhen, a fast, high-accuracy tool that automatically converts clinical notes into a prioritized list of patient phenotypes using Human Phenotype Ontology (HPO) terms. RESULTS: ClinPhen shows superior accuracy and 20× speedup over existing phenotype extractors, and its novel phenotype prioritization scheme improves the performance of gene-ranking tools. CONCLUSION: While a dedicated clinician can process 200 patient records in a 40-hour workweek, ClinPhen does the same in 10 minutes. Compared with manual phenotype extraction, ClinPhen saves an additional 3-5 hours per Mendelian disease diagnosis. Providers can now add ClinPhen's output to each summary note attached to a filled testing laboratory request form. ClinPhen makes a substantial contribution to improvements in efficiency critically needed to meet the surging demand for clinical diagnostic sequencing.


Assuntos
Biologia Computacional , Doenças Genéticas Inatas/diagnóstico , Registros Médicos , Algoritmos , Humanos , Processamento de Linguagem Natural , Fenótipo
15.
Orphanet J Rare Dis ; 11(1): 130, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27683084

RESUMO

We examined an extended, consanguineous family with seven individuals with severe intellectual disability and microcephaly. Further symptoms were hearing loss, vision impairment, gastrointestinal disturbances, and slow and asymmetric waves in the EEG. Linkage analysis followed by exome sequencing revealed a homozygous variant in SPATA5 (c.1822_1824del; p.Asp608del), which segregates with the phenotype in the family. Molecular modelling suggested a deleterious effect of the identified alterations on the protein function. In an unrelated family, we identified compound heterozygous variants in SPATA5 (c.[2081G > A];[989_991delCAA]; p.[Gly694Glu];[.Thr330del]) in a further individual with global developmental delay, infantile spasms, profound dystonia, and sensorineural hearing loss. Molecular modelling suggested an impairment of protein function in the presence of both variants.SPATA5 is a member of the ATPase associated with diverse activities (AAA) protein family and was very recently reported in one publication to be mutated in individuals with intellectual disability, epilepsy and hearing loss. Our results describe new, probably pathogenic variants in SPATA5 that were identified in individuals with a comparable phenotype. We thus independently confirm that bi-allelic pathogenic variants in SPATA5 cause a syndromic form of intellectual disability, and we delineate its clinical presentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...